证明不等式1/log5(19)+2/log3(19)+3/log2(19)
问题描述:
证明不等式1/log5(19)+2/log3(19)+3/log2(19)
答
1/log5(19)+2/log3(19)+3/log2(19)=log19(5)+log19(3^2)+log19(2^3)=log19(5*9*8)=log19(360)
证明不等式1/log5(19)+2/log3(19)+3/log2(19)
1/log5(19)+2/log3(19)+3/log2(19)=log19(5)+log19(3^2)+log19(2^3)=log19(5*9*8)=log19(360)