设f(x)=log以2为底x-1/1-ax为奇函数,a为常数.(1)求a的值 (2)证明f(x)在区间(1,正无穷)内单调递增 (3)若对于区间[3,4]上的每一个x值,不等式f(x)>m-2的x次方【x次方在2上】恒成立,求实数m的取值范围

问题描述:

设f(x)=log以2为底x-1/1-ax为奇函数,a为常数.
(1)求a的值 (2)证明f(x)在区间(1,正无穷)内单调递增 (3)若对于区间[3,4]上的每一个x值,不等式f(x)>m-2的x次方【x次方在2上】恒成立,求实数m的取值范围

(1)、∵f(x)是奇函数
∴f(-x)=log2^[(-x-1)/(1+ax)]=-log2^[(x-1)/(1-ax)]
∴(-x-1)/(1+ax)=[(x-1)/(1-ax)^(-1)
化简得:(a^2-1)x^2=0
a=±1
(2)、设x2>x1>1
则f(x2)-f(x1)=log2^[(x2-1)/(1-ax2)]-log2^[(x1-1)/(1-ax1)=log2^{[(x2-1)/(1-ax2)]/[(x1-1)/(1-ax1)}
log2^[(x2-1)(ax1-1)]/[ax2-1)(x1-1)]
∵x2>x1>1,∴x2-1>0,x1-1>0;ax2-1>1,ax1-1>1;(x2-1)/(x1-1)>1
∴log2^[(x2-1)(ax1-1)]/[(x1-1)(ax2-1)]>0;即:f(x2)>f(x1)
∴f(x)在x∈(1,+∞)上单调递增。

(1)、∵f(x)是奇函数
∴f(-x)=log2^[(-x-1)/(1+ax)]=-log2^[(x-1)/(1-ax)]
∴(-x-1)/(1+ax)=[(x-1)/(1-ax)^(-1)
化简得:(a^2-1)x^2=0
a=±1
(2)、设x2>x1>1
则f(x2)-f(x1)=log2^[(x2-1)/(1-ax2)]-log2^[(x1-1)/(1-ax1)=log2^{[(x2-1)/(1-ax2)]/[(x1-1)/(1-ax1)}
log2^[(x2-1)(ax1-1)]/[ax2-1)(x1-1)]
∵x2>x1>1,∴x2-1>0,x1-1>0;ax2-1>1,ax1-1>1;(x2-1)/(x1-1)>1
∴log2^[(x2-1)(ax1-1)]/[(x1-1)(ax2-1)]>0;即:f(x2)>f(x1)
∴f(x)在x∈(1,+∞)上单调递增.