设xx2+x+1=a,a≠0,求x2x4+x2+1的值.
问题描述:
设
=a,a≠0,求x
x2+x+1
的值. x2
x4+x2+1
答
∵
=a(a≠0),x≠0,x
x2+x+1
∴
=
x2+x+1 x
,即x+1 a
=1 x
-1,1 a
两边平方得:(x+
)2=(1 x
)2,即x2+1−a a
+2=1 x2
,(1−a)2
a2
整理得:x2+
=1 x2
,−a2−2a+1 a2
∴原式=
=1
x2+
+11 x2
=1
−2a+1 a2
.a2 1−2a
答案解析:已知等式变形后,根据x不为0求出x+
的值,两边平方表示出x2+1 x
,原式变形后代入计算即可求出值.1 x2
考试点:分式的化简求值.
知识点:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.