设xx2+x+1=a,a≠0,求x2x4+x2+1的值.

问题描述:

x
x2+x+1
=a,a≠0,求
x2
x4+x2+1
的值.

x
x2+x+1
=a(a≠0),x≠0,
x2+x+1
x
=
1
a
,即x+
1
x
=
1
a
-1,
两边平方得:(x+
1
x
2=(
1−a
a
2,即x2+
1
x2
+2=
(1−a)2
a2

整理得:x2+
1
x2
=
a2−2a+1
a2

∴原式=
1
x2+
1
x2
+1
=
1
−2a+1
a2
=
a2
1−2a

答案解析:已知等式变形后,根据x不为0求出x+
1
x
的值,两边平方表示出x2+
1
x2
,原式变形后代入计算即可求出值.
考试点:分式的化简求值.
知识点:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.