如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm.求:(1)△ABC的面积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;(4)作出△BCD的边BC边上的高DF,当BD=11cm时,试求出DF的长.

问题描述:

如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm.求:

(1)△ABC的面积;
(2)CD的长;
(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;
(4)作出△BCD的边BC边上的高DF,当BD=11cm时,试求出DF的长.

(1)∵∠ACB=90°,BC=12cm,AC=5cm,∴S△ABC=12BC×AC=30cm2,(2)∵S△ABC=12AB×CD=30cm2,∴CD=30÷12AB=6013cm,(3)S△ABE=12S△ABC=12×30=15cm2,(4)∵S△BCD=12BD×CD=12BC•DF,∴BD•CD=BC•DF,∴...
答案解析:(1)根据直角三角形面积的求法,即可得出△ABC的面积,
(2)根据三角形的面积公式即可求得CD的长,
(3)根据中线的性质可得出△ABE和△BCE的面积相等,从而得出答案,
(4)过D点作DF垂直于BC交BC与F,根据△BCD的面积即可求出DF.
考试点:三角形的面积.


知识点:本题考查了勾股定理的逆定理、直角三角形的面积的计算方法及面积公式应用同时考查了直角三角形的高、中点的性质,难度适中.