求函数y=sin^2+2sinxcosx+3cos^2x的最值,并写出函数y的最值时x的集合.
问题描述:
求函数y=sin^2+2sinxcosx+3cos^2x的最值,并写出函数y的最值时x的集合.
运用到了什么公式呀?
答
y=sin^2x+2sinxcosx+3cos^2x
=sin^2x+2sinxcosx+cos^2x+2cos^2x
=1+sin2x+2cos^2x-1+1
=sin2x+cos2x+2
=√2(√2/2sin2x+√2/2cos2x)+2
=√2(sin2xcosπ/4+cos2xsinπ/4)+2
=√2sin(2x+π/4)+2
y的最大值为√2+2
x=kπ+π/8