设函数f(x)是实数集R上的单调增函数,令F(x)=f(x)-f(2-x). (1)求证:F(x)在R上是单调增函数; (2)若F(x1)+F(x2)>0,求证:x1+x2>2.

问题描述:

设函数f(x)是实数集R上的单调增函数,令F(x)=f(x)-f(2-x).
(1)求证:F(x)在R上是单调增函数;
(2)若F(x1)+F(x2)>0,求证:x1+x2>2.

(1)任取x1,x2∈R,且x1<x2,则F(x1)-F(x2)=[f(x1)-f(2-x1)]-[f(x2)-f(2-x2)]=[f(x1)-f(x2)]+[f(2-x2)-f(2-x1)];∵f(x)是实数集R上的增函数,且x1<x2,则f(x1)-f(x2)<0,由x1<x2,...