已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.(Ⅰ)求f(x)的极值;(Ⅱ)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.
问题描述:
已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.
(Ⅰ)求f(x)的极值;
(Ⅱ)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.
答
(Ⅰ)f(x)的定义域为R,且 f′(x)=ex+a.①当a=0时,f(x)=ex,故f(x)在R上单调递增.从而f(x)没有极大值,也没有极小值.②当a<0时,令f′(x)=0,得x=ln(-a).f(x)和f′(x)的情况如下:x(...