曲线y=1/(根号x)在x=9处的切线斜率为多少?如题 答案是-1/54
问题描述:
曲线y=1/(根号x)在x=9处的切线斜率为多少?
如题 答案是-1/54
答
高三理科内容。求导。
这个式子求导得到y'=(-1/2)* x^(-3/2)
把x=9代入即可求得-1/54
答
你没有学习导数啊,切线斜率就是该处的导数值啊。
y=1/(根号x)=x^(-1/2) ==> y'=(-1/2)x^(-3/2)
==> y'(x=9)=(-1/2)9^(-3/2)=(-1/2)3^(-3)=-1/54
答
切线的斜率,即是导数在该点处的取值~y=1/根号x=x^(-1/2),^表示乘方,x^(-1/2)表示x的-1/2次方y'=(-1/2)x^(-1/2-1)=(-1/2)x^(-3/2)所以,当x=9时该处切线的斜率k=y'=(-1/2)×9^(-3/2)=(-1/2)×(1/729)^(1/2)=(-1/2)×(1...
答
求导,y的导数是-1/2*x的-3/2次方
代入x=9
就是-1/54