高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy
问题描述:
高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy
答
y'=2^arctan(1/x)*ln2*arctan(1/x)'
=2^arctan(1/x)*ln2*1/[1+(1/x)^2]*(1/x)'
=2^arctan(1/x)*ln2*1/[1+(1/x)^2]*(-1/x^2)
=-2^arctan(1/x)*ln2/(1+x^2)
答
dy=-2^arctan(1/x)ln2/(1+x^2)dx
答
y = 2 ^ arccot(x) - sin3
y ' = 2 ^ arccotx * [-1/(1+x²) ] * ln2
dy = 2 ^ arccotx * [-1/(1+x²) ] * ln2 dx
答
dy=-2^arctan(1/x)ln2 /(x^2+1) dx