已知等差数列{an}的前n项和为Sn,且(2n-1)Sn+1 -(2n+1)Sn=4n²-1(n∈N*)求证:1/√a1 + 1/√a2 +.+ 1/√an>1/2(√4n+1 -1)
问题描述:
已知等差数列{an}的前n项和为Sn,且(2n-1)Sn+1 -(2n+1)Sn=4n²-1(n∈N*)
求证:1/√a1 + 1/√a2 +.+ 1/√an>1/2(√4n+1 -1)
答
看不懂,问老师吧,及促进师生关系,也避免你做的题目与考纲偏离。
答
Sn+1/(2n+1)-Sn/(2n-1)=1Sn/(2n-1)=S1+n-1→Sn=(S1+n-1)(2n-1)→Sn=n(2n-1)an=4n-31/√an=2/2√(4n-3)>2/(√4n-3+√4n+1)=(√4n+1-√4n-3)/21/√a1 + 1/√a2 +.+ 1/√an>(√5-√1+√9-√5+√13-√9+...√4n+1-√4n-3...