若数列的递推公式为a1=1,a(n+1)=3a(n)-2*3^(n+1)求通项公式a(n+1),a(n)分别是第(n+1)项和第n项

问题描述:

若数列的递推公式为a1=1,a(n+1)=3a(n)-2*3^(n+1)求通项公式
a(n+1),a(n)分别是第(n+1)项和第n项

用待定系数法a(n+1)+k=3(a(n)+k)
整理:a(n+1)=3a(n)+2k
因为a(n+1)=3a(n)-2*3^(n+1)
所以k=-3^(n+1)
所以数列{a(n)-3^(n+1)}是公比为3的等比数列
所以a(n)-3^(n+1)=(a(1)-3^(n+1))*3^(n-1)
在移项整理即可