已知数列an的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列1.求a2,a32.证明{an-2}为等比数列3.求数列{nan}的前n项和Tn

问题描述:

已知数列an的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列
1.求a2,a3
2.证明{an-2}为等比数列
3.求数列{nan}的前n项和Tn

habit
习惯
n

a1=1,a2=3/2,a3=7/4
an=2-(1/2)^(n-1)
Tn=n/(2^(n-1))+(1/2)^(n-2)+n^2+n-4