如图所示,在梯形ABCD中,AD∥BC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1,则梯形ABCD的面积为_.

问题描述:

如图所示,在梯形ABCD中,AD∥BC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1,则梯形ABCD的面积为______.

延长BA与CD,交于F,
∵AD∥BC,
∴△FAD∽△FBC,
∵CE是∠BCD的平分线,
∴∠BCE=∠FCE,
∵CE⊥AB,
∴∠BEC=∠FEC=90°,
∵EC=EC,
∴△BCE≌△FCE(ASA),
∴BE=EF,
∴BF=2BE,
∵BE=2AE,
∴EF=2AE,
∴AE=AF,
∴BF=4AE=4AF,

S△FAD
S△FBC
(
AF
BF
)
2
1
16

设S△FAD=x,
∴S△FBC=16x,
∴S△BCE=S△FEC=8x,
∴S四边形AECD=7x,
∵四边形AECD的面积为1,
∴7x=1,
∴x=
1
7

∴梯形ABCD的面积为:S△BCE+S四边形AECD=15x=
15
7

故答案为:
15
7