在平面直角坐标系中,三角形AOB的位置如图,已知∠AOB=90°∠A=60°点A的坐标为(根号3,1)1.点B的坐标2.图像A,O,B三点的二次函数的解析式和这个函数图像的顶点

问题描述:

在平面直角坐标系中,三角形AOB的位置如图,已知∠AOB=90°∠A=60°点A的坐标为(根号3,1)
1.点B的坐标
2.图像A,O,B三点的二次函数的解析式和这个函数图像的顶点

(1)因为∠AOB=90°
Koa*Kob=-1 Koa=根号3
Kob= -(根号3)/3
又因为∠A=60°
OA=2,OB=根号3*2
B为(-3,根号3)
(2)设函数为y=ax²+bx+c
c=0
3a+根号3*b+c= -3
9a+(-3)*b+c=根号3
∴a=(1-根号3)/3
b= -(4根号3-3)/3
c=0
y=x²*(1-根号3)/3-x*(4根号3-3)/3
顶点x= -(9+根号3)/4
顶点(-(9+根号3)/4,(11*根号3-5)/8)

(1)根据题意,OA=√(3+1)=2;又因为∠AOB=90°∠A=60°,所以:OA=(1/2)AB,则有:AB=4,OB=2√3;设B(m,n),则有:m^2+n^2=OB^2=(2√3)^2=12;(m-√3)^2+(n-1)^2=AB^2=4^2=16.联立方程可得到:m=√3,n=-3或者m=-√3,n=...