圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是圆x^2+y^2-2x-2y+1=0方程可以化为(x-1)^2+(y-1)^2=1所以,这个圆是以(1,1)为圆心,1为半径的圆圆心到直线x-y-2=0距离为√2所以圆到直线的最大距离是 1+√2.也就是圆半径加上根号2其他的都懂了,请问为什么圆到直线的最大距离是r+圆到直线的距离
问题描述:
圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是
圆x^2+y^2-2x-2y+1=0方程可以化为
(x-1)^2+(y-1)^2=1
所以,这个圆是以(1,1)为圆心,1为半径的圆
圆心到直线x-y-2=0距离为√2
所以圆到直线的最大距离是 1+√2.也就是圆半径加上根号2
其他的都懂了,
请问为什么圆到直线的最大距离是r+圆到直线的距离
答