已知在等边三角形ABC中,D、E分别为AB、AC上的点,且BD=AE,EB与CD相交于点O,EF⊥CD于点F.求证:OE=2OF.

问题描述:

已知在等边三角形ABC中,D、E分别为AB、AC上的点,且BD=AE,EB与CD相交于点O,EF⊥CD于点F.求证:OE=2OF.

证明:∵△ABC是等边三角形,∴∠A=∠ABC=60°,AB=BC,在△ABE与△BCD中,∵AB=BC∠A=∠ABCBD=AE,∴△ABE≌△BCD,∴∠1=∠2,∵∠ADO是△BCD的外角,∴∠ADO=∠ABC+∠2=60°+∠2,∵∠ADO是△BOD的外角,∴∠A...
答案解析:先根据全等三角形的性质得出△ABE≌△BCD,由全等三角形的性质得出∠1=∠2,再根据三角形外角的性质求出∠BOD=60°,进而得出∠EOF=60°,由直角三角形的性质求出∠OEF的度数,故可得出结论.
考试点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.
知识点:本题考查的是等边三角形的性质、全等三角形的判定与性质、直角三角形的性质及三角形外角的性质,先根据题意得出△ABE≌△BCD是解答此题的关键.