已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?

问题描述:

已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.
(1)求证:四边形AEPM为菱形;
(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?

(1)证明:∵EF∥AB,PM∥AC,∴四边形AEPM为平行四边形.∵AB=AC,AD平分∠CAB,∴∠CAD=∠BAD,∵AD⊥BC(三线合一的性质),∵∠BAD=∠EPA,∴∠CAD=∠EPA,∵EA=EP,∴四边形AEPM为菱形.(2)P为EF中点时,S菱...
答案解析:(1)有一组邻边相等的平行四边形为菱形,在本题中,可证出四边形AEPM为平行四边形,关键是找一组邻边相等,∵AD平分∠BAC再者PE∥AM所以可证∠EAP=∠EPA即AE=EP,所以为菱形;
(2)S菱形AEPM=EP•h,S平行四边形EFBM=EF•h,若菱形AEPM的面积为四边形EFBM面积的一半,则EP=

1
2
EF,所以,P为EF中点时,S菱形AEPM=
1
2
S四边形EFBM
考试点:菱形的判定;等腰三角形的性质;平行四边形的性质.

知识点:此题主要考查了菱形的判定,以及平行四边形的性质,题型比较新颖.