已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME. (1)求证:四边形AEPM为菱形; (2)当P
问题描述:
已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.
(1)求证:四边形AEPM为菱形;
(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?
答
(1)证明:∵EF∥AB,PM∥AC,
∴四边形AEPM为平行四边形.
∵AB=AC,AD平分∠CAB,
∴∠CAD=∠BAD,
∵AD⊥BC(三线合一的性质),
∵∠BAD=∠EPA,
∴∠CAD=∠EPA,
∵EA=EP,
∴四边形AEPM为菱形.
(2)P为EF中点时,S菱形AEPM=
S四边形EFBM1 2
∵四边形AEPM为菱形,
∴AD⊥EM,
∵AD⊥BC,
∴EM∥BC,
又∵EF∥AB,
∴四边形EFBM为平行四边形.
作EN⊥AB于N,则S菱形AEPM=EP•EN=
EF•EN=1 2
S四边形EFBM.1 2