如图,在等腰△ABC中,AC=BC,以BC为直径作⊙O交AB于点D,DF⊥AC,垂足为F,FD的延长线交CB的延长线于点E.求证:直线EF是⊙O的切线.

问题描述:

如图,在等腰△ABC中,AC=BC,以BC为直径作⊙O交AB于点D,DF⊥AC,垂足为F,FD的延长线交CB的延长线于点E.求证:直线EF是⊙O的切线.

证明:连接OD,如右图所示,
∵AC=BC,
∴∠A=∠ABC,
∵OD=OB,
∴∠OBD=∠ODB,
∴∠ODB=∠A,
∴OD∥AC,
又∵DF⊥AC,
∴∠CFD=90°,
∴∠ODE=90°,
∴OD⊥EF,
∴EF是⊙O的切线.
答案解析:先连接OD,由于AC=BC,易得∠A=∠ABC,而OD=OB,又能得到∠OBD=∠ODB,等量代换可得∠ODB=∠A,利用同位角相等两直线平行可知OD∥AC,而DF⊥AC,那么∠CFD=90°,利用平行线性质可得∠ODE=90°,可证EF是⊙O的切线.
考试点:切线的判定;等腰三角形的性质;圆周角定理.
知识点:本题考查了切线的判定、等腰三角形的性质、平行线的判定和性质.解题的关键是连接OD,并证明OD∥AC.