已知3x-2y-5z=0,x+2y+-7y=0 且xyz 不等于0求(x*x-2y*y+z*z)/yz
问题描述:
已知3x-2y-5z=0,x+2y+-7y=0 且xyz 不等于0求(x*x-2y*y+z*z)/yz
答
首先联立方程组解得:
X=-Z;Y=2Z
因为xyz 不等于0,所以yz 不等于0
带入(x*x-2y*y+z*z)/yz
=[(-Z)(-Z)-2(2Z)(2Z)+z*z]/(2Z*Z)
=-3
答
3x-2y-5z=0,x+2y+-7y=0
x=5y,z=(13/5)y
(x*x-2y*y+z*z)/yz =(25y*y-2y*y+(13/5)*(13/5)y*y)/((13/5)y*y)
=744/65