已知函数f(x)=log2 (x+1),且a>b>c,试比较f(a)/a ,f(b)/bog,f(c)/c的大小请用关于直线的方程或斜率来解

问题描述:

已知函数f(x)=log2 (x+1),且a>b>c,试比较f(a)/a ,f(b)/bog,f(c)/c的大小请用关于直线的方程或斜率来解

f(0)=log2(1)=0,所以三个数的比较转化为曲线上的点a,b,c与原点的连线的斜率比较,由于a>b>c,函数随递增,但是增加的趋势是逐渐减小的,所以
f(a)/a > f(b)/b > f(c)/c.