若函数f(x)=sin3次方xcosx+cos3次方xsinx+根号3sin2次方x(1)求函数f(x)的单调减区间(2)已知三角形ABC的三边a.b.c对应角为A,B,且三角形的面积为S,若(根号3/2)向量AB*向量BC=S求f(A)的取值范围
问题描述:
若函数f(x)=sin3次方xcosx+cos3次方xsinx+根号3sin2次方x
(1)求函数f(x)的单调减区间
(2)已知三角形ABC的三边a.b.c对应角为A,B,且三角形的面积为S,若(根号3/2)向量AB*向量BC=S求f(A)的取值范围
答
f(x)=sinxcosx(sin^2x+cos^2x)+√3sin^2x
=sinxcosx+√3sin^2x
=sinx(cosx+√3sinx)
=2sinx(cosx*(1/2)+(√3/2)sinx)
=2sinxsin(x+π/6)
答
函数f(x)=(sinx)^3cosx+(cosx)^3sinx+√3(sinx)^2
=sinxcosx[(sinx)^2+(cosx)^2]+√3(sinx)^2
=sinxcosx+√3(sinx)^2
=1/2sin2x-√3/2cos2x+√3/2
=sin(2x-π/3)+√3/2
2kπ-π/2