试说明不论x,y为何实数,代数式(x y)²-2x-2y 2的值都不会小于1

问题描述:

试说明不论x,y为何实数,代数式(x y)²-2x-2y 2的值都不会小于1


(x+y)²-2x-2y+2
=(x+y)²-2(x+y)+2
令x+y=T,则:
原式=T²-2T+2
根据公式:a²-2a+1=(a-1)²
因此:
原式=T²-2T+2
=T²-2T+1+1
=(T-1)²+1
因此:
原式=(x+y-1)²+1
∵(x+y-1)²≥0
∴(x+y-1)²+1≥0+1,即:
原式:(x+y-1)²+1≥1
因此,不论x,y何值,代数式都是大于等于1的