求证:任意三角形的边长a,b,c满足不等式:a(b-c)^2+b(c-a)^2+c(a-b)^2+4abc>a^3+b^3+c^3

问题描述:

求证:任意三角形的边长a,b,c满足不等式:a(b-c)^2+b(c-a)^2+c(a-b)^2+4abc>a^3+b^3+c^3