a^n-b^n=(a-b)[(a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-1)],n是整数 这个公式怎么证明a^n-b^n=(a-b)[(a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-1)],n是整数 我忘了,
问题描述:
a^n-b^n=(a-b)[(a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-1)],n是整数 这个公式怎么证明
a^n-b^n=(a-b)[(a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-1)],n是整数
我忘了,
答
你的课本一定有这道题的详细证明 回去好好找