已知P是直线3x+4y+8=0的动点,PA,PB是圆x^2+y^2-2x-2y+1=0的两条切线,A,B是两个切点,C是圆心,求四边形PACB的面积的最小值,并求此时点P的坐标.

问题描述:

已知P是直线3x+4y+8=0的动点,PA,PB是圆x^2+y^2-2x-2y+1=0的两条切线,A,B是两个切点,C是圆心,求四边形PACB的面积的最小值,并求此时点P的坐标.

初步判断,圆心在(1,1)点,直线与圆相离,直线上不同的点到圆心的距离不同,当然是当P离圆心最近时有最小面积.设P(x0,y0),PC^2=(x0-1)^2+(y0-1)^2----------(1)3*x0+4*y0+8=0-------------(2)(2)带入(1)得PC^2=(5x0/...