数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*).(Ⅰ)求数列{an}的通项an;(Ⅱ)求数列{nan}的前n项和Tn.

问题描述:

数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和Tn

(I)∵an+1=2Sn,∴Sn+1-Sn=2Sn,∴Sn+1Sn=3.又∵S1=a1=1,∴数列{Sn}是首项为1、公比为3的等比数列,Sn=3n-1(n∈N*).∴当n≥2时,an-2Sn-1=2•3n-2(n≥2),∴an=1,n=12•3n−2,n≥2(II)Tn=a1+2a2+3a3+...
答案解析:(I)利用递推公式an+1=2Sn把已知转化为an+1与an之间的关系,从而确定数列an的通项;
(II)由(I)可知数列an从第二项开始的等比数列,设bn=n则数列bn为等差数列,所以对数列n•an的求和应用乘“公比”错位相减.
考试点:数列的求和;数列递推式.


知识点:本小题考查数列的基本知识,考查等比数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想方法,以及推理和运算能力.