设数列{an}的前n项和为Sn,Sn=a1(3n−1)2(对于所有n≥1),且a4=54,则a1的数值是______.

问题描述:

设数列{an}的前n项和为Sn,Sn=

a1(3n−1)
2
(对于所有n≥1),且a4=54,则a1的数值是______.

设数列{an}的前n项和为Sn,Sn=

a1(3n−1)
2
(对于所有n≥1),
则a4=S4-S3=
a1(81−1)
2
a1(27−1)
2
=27a1

且a4=54,则a1=2
故答案为2
答案解析:根据a4=S4-S3把Sn=
a1(3n−1)
2
代入,即可求得a4=27a1,进而求得a1
考试点:数列的求和.
知识点:本题主要考查了数列的求和问题.属基础题.