已知数列《an》满足:a1=1.A2=2,且an+2=(2+cosπ)(an-1)+3,n∈nж求通项公式an
问题描述:
已知数列《an》满足:a1=1.A2=2,且an+2=(2+cosπ)(an-1)+3,n∈nж
求通项公式an
答
a(1)=1,a(2)=2,a(n+2) = [2 + cos(PI)][a(n)-1] + 3 = [2-1][a(n)-1] +3= a(n) + 2,a(2n+1) = a(2n-1+2) = a(2n-1) + 2,{a(2n-1)}是首项为a(1)=1,公差为2的等差数列.a(2n-1) = 1 + 2(n-1) = 2n-1.a(2n+2) = a(2n)+2,...