a+b+c=0,1/(a+1)+1/(b+2)+1/(c+3)=0,求(a+1)的平方+(b+2)的平方+(c+3)的平方的值
问题描述:
a+b+c=0,1/(a+1)+1/(b+2)+1/(c+3)=0,求(a+1)的平方+(b+2)的平方+(c+3)的平方的值
答
a+b+c=0
(a+1)+(b+2)+(c+3)=6
((a+1)+(b+2)+(c+3))^2=36
同时
1/(a+1)+1/(b+2)+1/(c+3)=0
(a+1)(b+2)+(a+1)(c+3)+(b+2)(c+3)=0
所以
(a+1)^2+(b+2)^2+(c+3)^2=36
答
令x=a+1;y=b+2;z=c+3;则x+y+z=6;(1) (1)的平方:x^2+y^2+z^2+2(xy+xz+yz)=36 (2)
1/x+1/y+1/z=0,
(2)中(xy+xz+yz)=xyz(1/x+1/y+1/z)=0因此 x^2+y^2+z^2=36
即所求的值为:36
答
a+b+c=0,(a+1)+(b+2)+(c+3)=6,1/(a+1)+1/(b+2)+1/(c+3)=0,得(b+2)(a+1)+(b+2)(c+3)+(a+1)(c+3)=0(a+1)^2+(b+2)^2+(c+3)^2=〔(a+1)+(b+2)+(c+3)〕^2-2〔(b+2)(a+1)+(b+2)(c+3)+(a+1)(c+3)〕=36