有一串数如下:1,2,4,7,11,16,.它的规律是:从1开始,加1,加2,加3.一次逐个产生这串数,直到第五个数为止.那么,在这50个数中,被3除余1的数有几个?写下思路,让我尽可能弄懂,然后,算试!
问题描述:
有一串数如下:1,2,4,7,11,16,.它的规律是:从1开始,加1,加2,加3.一次逐个产生这串数,直到第五个数为止.那么,在这50个数中,被3除余1的数有几个?
写下思路,让我尽可能弄懂,然后,算试!
答
有几个~
答
规律是每两个数相差1、2、3、4……
第n个数是1+1+2+……+(n-1)=1+n(n-1)/2
就是说n(n-1)/2能被3整除就行了
n=1、2、3、……50中,三个一组,因为三个就以循环了,每组都有两个使n(n-1)/2能被3整除,是第一三个
50/3=16余2
最后剩两个n=49能整除,50不行
所以是16*2+1=33