在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3.(1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列.(2)求f(x)的解析式.
问题描述:
在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3.
(1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列.
(2)求f(x)的解析式.
答
(1)由
,解得f(1)=2,f(2)=3.
f(1)+f(2)=5 f(2)−f(1)=1
所以f(2n+1)-f(2n-1)=[f(2n+1)-f(2n)]+[f(2n)-f(2n-1)]=3+1=4,
所以f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列,公差为4.
(2)当x为奇数时,f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
+2=2x,(x−1)•4 2
当x为偶数时,f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
•1+1 2
•3+2=2x−1x−2 2
所以f(x)=
.
2x,x为奇数 2x−1,x为偶数
答案解析:(1)利用条件建立方程组关系,利用f(1),f(3),f(5)的规律,结合等差数列的定义判断f(2n+1)-f(2n-1)是个常数即可.
(2)利用当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3去,求出函数f(x)的解析式.
考试点:等差关系的确定;函数奇偶性的性质.
知识点:本题主要考查抽象函数的应用,以及等差数列的定义和判断,综合性较强.