数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn

问题描述:

数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn

得s1为1/3,则s1/a1为1,则可知sn/an=n(2n-1),有因为an=sn-sn-1,所以得sn/sn-sn-1=2n-n,化简得sn/sn-1=(2n-n)/(2n-n-1)=n(2n-1)/(2n+1)(n-1),则sn=s2/s1×s3/s2……sn/sn-1×s1,只要带入几项就可...