如图,在△ABC中,∠A=62°,∠1=20°,∠2=35°.求∠BDC的度数.
问题描述:
如图,在△ABC中,∠A=62°,∠1=20°,∠2=35°.求∠BDC的度数.
答
∵在△ABC中,∠A=62°,
∴∠ABC+∠ACB=180°-62°=118°.
∵∠1=20°,∠2=35°,
∴∠DBC+∠DCB=∠ABC+∠ACB-∠1-∠2=118°-20°-35°=63°.
∴∠BDC=180°-(∠DBC+∠DCB)=180°-63°=117°.
答案解析:先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由∠1=20°,∠2=35°求出∠DBC+∠DCB的度数,由三角形内角和定理即可得出结论.
考试点:三角形内角和定理.
知识点:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.