Cos1°+cos2°+cos3°+……cos89°=
问题描述:
Cos1°+cos2°+cos3°+……cos89°=
答
原式中不是求平方和哈,那么第二种做法好像有问题哟!
答
乘以sin0.5
0.5*(sin1.5-sin0.5)+0.5*sin(sin2.5-sin1.5)+...+0.5*(sin89.5-sin88.5)=0.5*(sin89.5-sin0.5)
原式=0.5*cot0.5-0.5
答
由Sin(A+B)=SinACosB+CosASinB
Sin(A-B)=SinACosB-CosASinB
则Sin(A+B)+Sin(A-B)=2SinACosB
Cos1°+cos2°+cos3°+……cos89°
=2Sin1°(Cos1°+cos2°+cos3°+……cos89°)/2Sin1°
=(2 Sin1°Cos1°+2 Sin1°Cos2°+2 Sin1°Cos3°+•••+2 Sin1°Cos88°+2 Sin1°Cos89°)/ 2Sin1°
=(Sin2°+ Sin0°+ Sin3°+ Sin(-1)°+ Sin4°+ Sin(-2)°+•••+ Sin89°+ Sin(-87)°+ Sin90°+ Sin(-88)°)/ 2Sin1°
=(Sin2°+ Sin0°+ Sin3°- Sin1°+ Sin4°- Sin2°+•••+ Sin89°- Sin87°+ Sin90°- Sin88°)/ 2Sin1°
=( Sin90°- Sin1°)/ 2Sin1°
=(1- Sin1°)/ 2Sin1°