设f(x)=sin(2x+π/6)+2msinxcosx,x∈R,若f(x)的最大值为1/2,求m值f(x)=sin(2x+π/6)+2msinxcosx=(√3sin2x)/2+(cos2x)/2+msin2x=(m+√3/2)sin2x+(cos2x)/2所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2解得m=-√3/2所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2是什么意思
问题描述:
设f(x)=sin(2x+π/6)+2msinxcosx,x∈R,若f(x)的最大值为1/2,求m值
f(x)=sin(2x+π/6)+2msinxcosx
=(√3sin2x)/2+(cos2x)/2+msin2x
=(m+√3/2)sin2x+(cos2x)/2
所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2
解得m=-√3/2
所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2是什么意思
答