已知向量a=(2cosx,1),b=(根号2(x+π/4),m)令f(x)=a点积b(1)若x属于R,求f(x)最小正周期T(2)若f(x)在[0,π/4]上最大值与最小值之和为6,求m的值应为已知向量a=(2cosx,1),b=(根号2sin(x+π/4),m)令f(x)=a点积b (1)若x属于R,求f(x)最小正周期T (2)若f(x)在[0,π/4]上最大值与最小值之和为6,求m的值
问题描述:
已知向量a=(2cosx,1),b=(根号2(x+π/4),m)令f(x)=a点积b
(1)若x属于R,求f(x)最小正周期T
(2)若f(x)在[0,π/4]上最大值与最小值之和为6,求m的值
应为
已知向量a=(2cosx,1),b=(根号2sin(x+π/4),m)令f(x)=a点积b
(1)若x属于R,求f(x)最小正周期T
(2)若f(x)在[0,π/4]上最大值与最小值之和为6,求m的值
答
f(x)=a点积b=2根号2sin(x+π/4)cosx+m=2根号2(sinxcosπ/4+cosxsinπ/4)cosx+m=sin 2x+2cos^2x+m=sin2x+cos2x+1+m所以若x属于R,求f(x)最小正周期T=πdf=2cos2x-2sin2x,在[0,π/4],df(π/8)=0,f(π/8)=根号2+1+mf(0)...