已知点P在圆x2+y2=5上,点Q(0,-1),则线段PQ的中点的轨迹方程是(  )A. x2+y2-x=0B. x2+y2-y-1=0C. x2+y2-y-2=0D. x2+y2-x+y=0

问题描述:

已知点P在圆x2+y2=5上,点Q(0,-1),则线段PQ的中点的轨迹方程是(  )
A. x2+y2-x=0
B. x2+y2-y-1=0
C. x2+y2-y-2=0
D. x2+y2-x+y=0

设P(a,b),线段PQ中点M坐标为(x,y),
由Q坐标为(0,-1),得到线段PQ中点坐标为(

a
2
b+1
2
),
∴x=
a
2
,y=
b+1
2
,即a=2x,b=2y-1,
代入圆方程得:4x2+(2y-1)2=5,即x2+y2-y-1=0,
则线段PQ中点的轨迹方程为x2+y2-y-1=0.
故选B
答案解析:设出P与线段PQ中点M的坐标,由Q的坐标,利用中点坐标公式表示出m与n,变形后表示出a与b,代入圆的方程中即可得到线段PQ中点轨迹方程.
考试点:圆的标准方程.
知识点:此题考查了圆的标准方程,以及动点的轨迹方程,弄清题意是解本题的关键.