请用逆向运用等式1/a-1/b=(b-a)/ab,如1/12=(4-3)3*4=1/3-1/4,计算:1+1/2+1/6+1/12+………+1/n(n+1).【 n为正整数】

问题描述:

请用逆向运用等式1/a-1/b=(b-a)/ab,如1/12=(4-3)3*4=1/3-1/4,计算:
1+1/2+1/6+1/12+………+1/n(n+1).【 n为正整数】

1+1/2+1/6+1/12+………+1/n(n+1). =1+(1-1/2)+(1/2-1/3)+(1/3-1/4)+.......+(1/n-1/(n+1))=1+1-1/(n+1) 【 n为正整数】

裂项
1+1-1/2+1/2-1/3+1/3-1/4++1/n-1/n+1=2-1/n+1

1+1/2+1/6+1/12+………+1/n(n+1)
=1+1-1/2+1/2-1/3+1/3-1/4+………+1/n-1/(n+1)
=1+1-1/(n+1)
=2-1/(n+1)