已知a^2-2a+b^2+4b+5=0,则a^b= ( ) ; 已知m^2+m-1=0,则m^3+2m^2+2004=( )

问题描述:

已知a^2-2a+b^2+4b+5=0,则a^b= ( ) ; 已知m^2+m-1=0,则m^3+2m^2+2004=( )

a^2-2a+b^2+4b+5=0
a^2-2a+1+b^2-4b+4 = 0
( a -1)^2 + (b+2)^2 = 0;
所以a = 1; b = -2;
a^b = 1;

由a^2-2a+b^2+4b+5=0,得:
(a-1)^2+(b+2)^2=0,所以,
a-1=0,a=1
b+2=0,b=-2
所以,a^b=1
m^3+2m^2+2004
=m^3+m^2-m+m^2+m-1+2005
=m(m^2+m-1)+(m^2+m-1)+2005
=2005