1/1x2+1/2x3+1/3x4+...+1/n(n+1)怎么算

问题描述:

1/1x2+1/2x3+1/3x4+...+1/n(n+1)怎么算

1/1x2+1/2x3+1/3x4+...+1/n(n+1)
=1-1/2+1/2-1/3+1/3-1/4+.+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)