等腰直角三角形ABC中,∠ACB=90度,AC=BC,PQ在斜边上,∠PCQ=45度求证PQ*2=AP*2+BQ*2(*代表次方)
问题描述:
等腰直角三角形ABC中,∠ACB=90度,AC=BC,PQ在斜边上,∠PCQ=45度求证PQ*2=AP*2+BQ*2(*代表次方)
答
作CD⊥CP,CD=CA,连DB
易证△ACP≌△BCD
所以,BD=AP
∠DBC=45度
所以,∠DBQ=∠DBC+∠DBQ=45+45=90
所以,QD^2=QB^2+DB^2=BQ^2+AP^2
易证△PCQ≌△DCQ
所以,QD=PQ
所以PQ^2=AP^2+BQ^2