将f(x)=sinxcosx+cos²x化成标准三角函数

问题描述:

将f(x)=sinxcosx+cos²x化成标准三角函数

f(x)=sinxcosx+cos²x
=(1/2)sin2x+(2cos²x-1)/2+(1/2)
=(1/2)sin2x+(1/2)cos2s+(1/2)
=(√2/2)sin(2x+π/4)+(1/2)

f(x)=1/2*sin2x+(1+cos2x)/2
=1/2(sin2x+cos2x)+1/2
=1/2(sin2x+cos2x)+1/2
=√2/2(√2/2*sin2x+√2/2cos2x)+1/2
=√2/2(sin2xcosπ/4+cos2xsinπ/4)+1/2
=√2/2sin(2x+π/4)+1/2