已知sinα是方程5x²-7x-6= 0的根〔sin(-α-3/2π)sin(3/2π-α)*tan ^2(2π-α)〕/〔cos(π/2-α)cos(π/2 +α)
问题描述:
已知sinα是方程5x²-7x-6= 0的根
〔sin(-α-3/2π)sin(3/2π-α)*tan ^2(2π-α)〕/〔cos(π/2-α)cos(π/2 +α)
答
5x²-7x-6=0
(5x+3)(x-2)=0
x=-3/5 x=2>1
取sinα=-3/5
cos(2π-α)cos(π+α)tan²(2π-α)/sin(π-α)sin(2π-α)cot(π-α)
=-cosαcosαtan²α/sinαsinαcotα
=-sinα/cosα=-sinα/[√(1-cosα²)]
=±(3/5)/(4/5)
=±3/5