已知(1-tana)/(2+tana)=1求证tan2a=-4tan(a+派/4)
问题描述:
已知(1-tana)/(2+tana)=1
求证tan2a=-4tan(a+派/4)
答
(1-tana)/(2+tana)=1
解得:tana=-1/2
tan2a=2tana/(1-tan平方a) =-4/3
-4tan(a+派/4)
=(-4tana-4)/(1-tana)
=-4/3
故:tan2a=-4tan(a+派/4)
答
证明:
(1-tana)/(2+tana)=1
1-tana=2+tana
tana=-1/2
tan2a=2tana/(1-tanatana)
=(-1/2×2)/[1-(-1/2)×(-1/2)]
=-4/3
-4tan(a+π/4)=-4(tana+tanπ/4)/(1-tanatanπ/4)
=-4(-1/2+1)/[1-(-1/2)×1]
=-4/3
所以tan2a=-4tan(a+π/4)
答
1-tanA/2+tanA=11-tanA=2+tanA tanA=-1/2; tan2A=2tanA/(1-tan^2 A)=2*(-1/2)/[1-(-1/2)^2]=-1/[1-1/4]=-1/(3/4)=-4/3 -4tan(A+π/4)=-4*[(tanA+tanπ/4)/(1-tanAtanπ/4)]=-4*[(tanA+1)/(1-tanA)]=-4*[(-1/2+1)/(...