证明下列恒等式(1)tan(x/2+π/4)+tan(x/2-π/4)=2tanx(1)tan(x/2+π/4)+tan(x/2-π/4)=2tanx(2)(1-2sinαcosα/cos²α-sin²α)=(1-tanα)/(1+tanα)

问题描述:

证明下列恒等式(1)tan(x/2+π/4)+tan(x/2-π/4)=2tanx
(1)tan(x/2+π/4)+tan(x/2-π/4)=2tanx
(2)(1-2sinαcosα/cos²α-sin²α)=(1-tanα)/(1+tanα)

1.tan(x/2+π/4)+tan(x/2-π/4)
=[tan(x/2)+tan(π/4)]/[1-tan(x/2)tan(π/4)]+[tan(x/2)-tan(π/4)]/[1+tan(x/2)tan(π/4)]
=[tan(x/2)+1]/[1-tan(x/2)]+[tan(x/2)-1]/[1+tan(x/2)]
=[(tan(x/2)+1)^2-(tan(x/2)-1)^2]/[1-(tan(x/2))^2]
=4tan(x/2)/[1-(tan(x/2))^2]
=2tanx
2.(1-2sinαcosα)/(cos²α-sin²α)
(1-tanα)/(1+tanα)
=[(cosa-sina)/cosa]/[(cosa+sina)/cosa]
=(cosa-sina)/(cosa+sina)
=(cosa-sina)²/(cos²a-sin²a)
=(1-2sinαcosα)/(cos²α-sin²α)