用换元法求不定积分 ∫e^(1/x)/x^2dx
问题描述:
用换元法求不定积分 ∫e^(1/x)/x^2dx
答
y'=2f(x)*f'(x)+f'(x²)*(x²)'
=2f(x)*f'(x)+2xf'(x²)
所以
y''=2f'(x)*f'(x)+2f(x)*f''(x)+2f'(x²)+2xf''(x²)*(x²)'
=2[f'(x)]²+2f(x)*f''(x)+2f'(x²)+4x²f''(x²)
答
a=1/x
x=1/a
dx=-da/a²
原式=∫e^a*a²(-da/a²)
=-∫e^ada
=-e^a+C
=-e^(1/x)+C