α与β是锐角,α+β不等于90°.3sinβ=sin(2α+β)当tanβ要求tan(α+β)=2tanα成立则tanα和tanβ的值为多少
问题描述:
α与β是锐角,α+β不等于90°.3sinβ=sin(2α+β)
当
tanβ要求tan(α+β)=2tanα成立
则
tanα和tanβ的值为多少
答
答:tanα=√2/2,tanβ=√2/4
α与β是锐角,α+β不等于90°
tan(α+β)=2tanα
(tanα+tanβ)/(1-tanα*tanβ)=2tanα
tanβ=tanα/(1+2tan^2α)
tanβ≤√2/4
tanα/(1+2tan^2α)≤√2/4
2√2*[tanα-(√2/2)]^2≥0
设tanα=√2/2,则sinα=1/√3,cos=√(2/3)
tanβ=tanα/(1+2tan^2α)=(√2/2)/[1+2(√2/2)^2]=√2/4
3sinβ=sin(2α+β)
3sinβ=sin(2α)*cosβ+cos(2α)*sinβ
3tanβ=2sinα*cosα+(1-2sin^α)*tanβ
tanβ=sinα*cosα/(1+sin^2α)=(1/√3)*√(2/3)/[1+(1/√3)^2]=√2/4
故tanα=√2/2,tanβ=√2/4