化简:根号1+cosa-根号1-cosa(a∈π,2π)

问题描述:

化简:根号1+cosa-根号1-cosa(a∈π,2π)

=根号1+[2cos²(a/2)-1]-根号1-[1-2sin²(a/2)]
=根号2(cosa/2 +sina/20
=1/2(根号2/2cosa/2 +根号2/2sina/2)
=1/2[sin(a/2+π/4)]

a∈(π,2π) >>>> a/2∈(π/2,π)于是得到cos(a/2)01+cosa=2[cos(a/2)]^2 √(1+cosx)=-√2cos(a/2)1-cosa=2[sin(a/2)]^2 √(1-coasa)=√2sin(a/2)√(1+cosx)-√(1-coasa)=-√2cos(a/2)-√2sin(a/2)=-2sin(a/2+π/4)...