在三角形ABC中,角BAC=45度,AD垂直BC于D点,已知BD=6,CD=4,那么高AD的长是多少?
问题描述:
在三角形ABC中,角BAC=45度,AD垂直BC于D点,已知BD=6,CD=4,那么高AD的长是多少?
答
AB^2=BD^2+AD^2,AC^2=CD^2+AD^2.
BC^2=AC^2+AB^2-2AB*AC*COS45°.
2AB*AC*COS45°=AC^2+AB^2-BC^2
=BD^2+2AD^2+AC^2-BC^2=6²+4²-10²+2AD^2.
又2AB*AC*COS45°=2AB*AC*SIN45°=2BC*AD(三角形面积公式)
2BC*AD=6²+4²-10²+2AD^2,解得AD=12.